7.1 Oblique Triangles and the Law of Sines

Congruency and Oblique Triangles ▪ Derivation of the Law of Sines ▪ Solving SAA and ASA Triangles (Case 1) ▪ Area of a Triangle

Mrs. Poland
December 18, 2013
Objective #1: Students will be able to use the Law of Sines to solve oblique triangle problems.

SC #1: I can solve LOS problems when given two angles and a side in an oblique triangle.

SC#2: I can find area of an oblique triangle using a formula involving Sine.
Congruence Axioms

Side-Angle-Side (SAS)

If two sides and the included angle of one triangle are equal, respectively, to two sides and the included angle of a second triangle, then the triangles are congruent.

Angle-Side-Angle (ASA)

If two angles and the included side of one triangle are equal, respectively, to two angles and the included side of a second triangle, then the triangles are congruent.

Side-Side-Side (SSS)

If three sides of one triangle are equal, respectively, to three sides of a second triangle, then the triangles are congruent.
Oblique Triangles

- **Oblique triangle** - A triangle that is not a right triangle

- The measures of the three sides and the three angles of a triangle can be found if at least one side and any other two measures are known.
Data Required for Solving Oblique Triangles

Case 1 One side and two angles are known (SAA or ASA).

Note

If three angles of a triangle are known, unique side lengths cannot be found because AAA assures only similarity, not congruence.

between the two sides are known (SAS).

Case 4 Three sides are known (SSS).
Start with an oblique triangle, either acute or obtuse.

Let \(h \) be the length of the perpendicular from vertex \(B \) to side \(AC \) (or its extension).

Then \(c \) is the hypotenuse of right triangle \(ABD \), and \(a \) is the hypotenuse of right triangle \(BDC \).
Derivation of the Law of Sines

In triangle ADB,
\[\sin A = \frac{h}{c} \text{ or } h = c \sin A \]

In triangle BDC,
\[\sin C = \frac{h}{a} \text{ or } h = a \sin C \]

Since $h = c \sin A$ and $h = a \sin C$,
\[a \sin C = c \sin A \]
\[\frac{a}{\sin A} = \frac{c}{\sin C} \]

Similarly, it can be shown that
\[\frac{a}{\sin A} = \frac{b}{\sin B} \text{ and } \frac{b}{\sin B} = \frac{c}{\sin C}. \]
Law of Sines

In any triangle ABC, with sides a, b, and c,

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$
Example 1

USING THE LAW OF SINES TO SOLVE A TRIANGLE (SAA)

Solve triangle ABC if $A = 32.0^\circ$, $B = 81.8^\circ$, and $a = 42.9$ cm.

\[
\frac{a}{\sin A} = \frac{b}{\sin B} \quad \text{Law of sines}
\]

\[
\frac{42.9}{\sin 32.0^\circ} = \frac{b}{\sin 81.8^\circ}
\]

\[
b = \frac{42.9 \sin 81.8^\circ}{\sin 32.0^\circ} \approx 80.1 \text{ cm}
\]

\[
A + B + C = 180^\circ
\]

\[
C = 180^\circ - A - B
\]

\[
C = 180^\circ - 32.0^\circ - 81.8^\circ = 66.2^\circ
\]

Use the Law of Sines to find c.

\[
\frac{a}{\sin A} = \frac{c}{\sin C}
\]

\[
\frac{42.9}{\sin 32.0^\circ} = \frac{c}{\sin 66.2^\circ}
\]

\[
c = \frac{42.9 \sin 66.2^\circ}{\sin 32.0^\circ} \approx 74.1 \text{ cm}
\]
Jerry wishes to measure the distance across the Big Muddy River. He determines that $C = 112.90°$, $A = 31.10°$, and $b = 347.6$ ft. Find the distance a across the river.

First, find the measure of angle B.

$B = 180° - A - C = 180° - 31.10° - 112.90° = 36.00°$

Now use the Law of Sines to find the length of side a.

\[
\frac{a}{\sin A} = \frac{b}{\sin B} \quad \frac{a}{\sin 31.10°} = \frac{347.6}{\sin 36.00°} \quad a = \frac{347.6 \sin 31.10°}{\sin 36.00°} \approx 305.5 \text{ ft}
\]

The distance across the river is about 305.5 feet.
Two ranger stations are on an east-west line 110 mi apart. A forest fire is located on a bearing N 42° E from the western station at A and a bearing of N 15° E from the eastern station at B. How far is the fire from the western station?

First, find the measures of the angles in the triangle.

\[
m\angle BAC = 90° - 42° = 48°
\]
\[
m\angle ABC = 90° + 15° = 105°
\]
\[
m\angle C = 180° - 105° - 48° = 27°
\]
Now use the Law of Sines to find b.

\[
\frac{b}{\sin B} = \frac{c}{\sin C}
\]

\[
\frac{b}{\sin 105^\circ} = \frac{110}{\sin 27^\circ}
\]

\[
b = \frac{110 \sin 105^\circ}{\sin 27^\circ} \approx 234 \text{ mi}
\]

The fire is about 234 miles from the western station.
Law of sines

Classwork

- do two problems on handout
In any triangle $\triangle ABC$, the area A is given by the following formulas:

$A = \frac{1}{2} bc \sin A \quad A = \frac{1}{2} ac \sin B \quad A = \frac{1}{2} ab \sin C$

Note

If the included angle measures 90°, its sine is 1, and the formula becomes the familiar

$A = \frac{1}{2} bh$.
Find the area of triangle ABC.

\[A = \frac{1}{2}ac \sin B \]
\[= \frac{1}{2}(34.0)(42.0)\sin 55^\circ 10' \]
\[\approx 586 \text{ ft}^2 \]

Find the area of the triangle, ABC with \(A = 72^\circ, b = 16 \) and \(c = 10 \).

\[A = \frac{1}{2}bc \sin A \]
\[A = \frac{1}{2}(16)(10)\sin 72^\circ \]
\[A \approx 76.1 \text{ ft}^2 \]
Find the area of triangle ABC if $A = 24°40'$, $b = 27.3$ cm, and $C = 52°40'$.

Before the area formula can be used, we must find either a or c.

Draw a diagram.

$B = 180° – 24°40′ – 52°40′ = 102°40′$

$$\frac{a}{\sin A} = \frac{b}{\sin B} \quad \frac{a}{\sin 24°40'} = \frac{27.3}{\sin 102°40'}$$

$a = \frac{27.3 \sin 24°40'}{\sin 102°40'}$

Now find the area.

$$A = \frac{1}{2} ab \sin C = \frac{1}{2} (11.7)(27.3) \approx 127 \text{ cm}^2$$

Caution

Whenever possible, use given values in solving triangles or finding areas rather than values obtained in intermediate steps to avoid possible rounding errors.
Area Classwork

- do problem on handout